Дисплейная борьба OLED и LCD.


oled vs lcdВ самом названии OLED (Organic Light Emitting Diode) содержатся два кардинальных отличия от LCD технологии – “органический” и “светоизлучающий”. Стоит поподробнее остановиться на каждом из этих двух пунктов, чтобы понять, почему эта технология столь интересна и почему именно она оказалась следующим этапом после LCD.
Начиная с 60-х годов, микроэлектроника основывается исключительно на неорганических материалах: кремний, германий, арсенид галлия, металлические проводники из алюминия или меди, различные диэлектрики, типа того же диоксида кремния. Здесь все уже отточено от и до, расписано на десять лет вперед, и все всем известно. Тем не менее, все это время не прекращалась исследовательская работа по органическим материалам – полимерам и олигомерам, а также гибридным органическим-неорганическим соединениям. По всему спектру параметров: проводимость, полупроводниковые качества, светоизлучение. Не говоря уже о том, что органика обладает рядом интересных качеств, вроде более мягких требований к температуре окружающей среды, зачастую выдающейся гибкостью, и т.д., что открывает перед производителями электронных устройств ряд совершенно новых применений.
Впрочем, можно возразить, что органические материалы используются даже в производстве центральных процессоров в течение последних лет, и, в какой-то мере, это действительно будет справедливым: проводящие органические соединения используются в упаковке процессоров, для Intel – начиная еще с OLGA (Organic Land Grid Array), да и в литографии, в качестве фоторезистивных материалов. Имеются небезуспешные опыты использования их в качестве диэлектриков. Но это все не вспомогательные функции – транзисторы, диоды, конденсаторы: там вы органики сегодня не увидите.
Однако, с ростом проблем, встающих сегодня перед традиционной неорганической микроэлектроникой, вероятность того, что производители начнут обращать все больше внимания на органику, становится все выше и выше.
Но сейчас нас больше интересует один конкретный аспект таких материалов, а именно – тех, что обладают светоизлучающими свойствами. Пионером в их исследовании стал Eastman Kodak, чьи ученые, Chin Tang и Steve VanSlyke, еще в 1987 году издали статью “Organic electroluminiscent diodes”, описывающую новый класс тонкопленочных устройств на базе органических материалов, обладающих электролюминисцентными качествами, заметно превосходящими все, что было создано в этой области ранее.
Впервые предложенная Kodak схема с двумя слоями органики между электродами вместо одного и сегодня остается основным вариантом, используемым для создания OLED устройств. Вся эта система имела толщину менее 500 нм, вместе с задней подсветкой, каковой она, помимо всего прочего, сама и является!
При прохождении тока напряжением от 2.5 В, базовый слой начинает излучать фотоны, чей поток становится все более интенсивным по мере увеличения силы тока, усиливаясь практически линейно, и позволяя при напряжении менее 10 В получить яркость более 1000 Кд на квадратный метр, что минимум в два раза превышает соответствующий показатель сегодняшних LCD экранов (максимум же – свыше 100 000 Кд на квадратный метр). Пик интенсивности спектра приходится на 550 нм длину волны, что соответствует зеленому цвету.
Естественно, кроме явных плюсов, были и минусы. Тут и долговечность, точнее, ее отсутствие – в первоначальных опытах светимость при постоянном напряжении падала вдвое уже после 100 часов непрерывной работы, и проблемы с отдельными участками спектра, в частности, с голубым. Тем не менее, прорыв был очевиден, учитывая, что до этого для получения более-менее нормальной светимости требовалось напряжение порядка 100 В.
К решению оставшихся проблем присоединилось множество фирм (на сегодняшний день OLED занимаются порядка восьми десятков компаний и университетов), и большинство из них в той или иной мере сегодня уже можно считать решенными. Новые OLED материалы представляют из себя куда более сложные комбинации веществ, чем это было на заре их истории. Новые химические формулы базовых слоев, отдельные обогащающие добавки, отвечающие каждая за свою часть спектра – красную, синюю, зеленую…
Успехи более чем впечатляют: хотя в синем спектре последние перспективные OLED материалы и остаются наименее долговечными, тем не менее, даже в условиях синей светимости их срок жизни достигает до 10 тысяч часов. Красный и зеленый цвета дают до 40 тысяч, универсальный белый – 20 тысяч часов. Уже прилично, учитывая, что для тех же цифровых камер, к примеру, среднее время жизни экрана считается нормальным от 1000 часов. К тому же в коммерческих продуктах речь очевидно будет идти о классической схеме используемой в LCD, когда экран состоит из сплошных белых OLED излучателей, с цветными фильтрами, отвечающими за придание цвета конкретным пикселам. Но все же здесь еще есть над чем серьезно поработать.
Ко всему прочему, новые основные материалы значительно повышают и физические параметры OLED. В частности, повышая верхнюю планку диапазона рабочих температур более чем до 100 градусов по Цельсию, с прицелом на использование в автомобильной электронике и тому подобных устройствах.
Как в традиционных CRT экранах, OLED экран представляет из себя матрицу состоящую из комбинаций ячеек трех основных цветов – красного, синего, зеленого. В соответствии от того, какой цвет от него требуется – регулируется уров;ень напряжения на каждой из ячеек матрицы в результате чего смешением трех получившихся оттенков и получается требуемый результат. Схема знакомая и привычная, но до сих пор ничего более простого и эффективного так и не придумано.
В своем развитии, OLED экраны полностью повторяют путь пройденный их предшественниками, LCD также поначалу четко делился на экраны с пассивной и активной матрицей, но потом, по мере совершенствования технологий, пассивная матрица осталась лишь в узком классе устройств с небольшой диагональю, где просто-напросто не требуется качественное изображение. OLED экраны также начали с пассивных матриц, которые прекрасно подходят, например, для экранов автомагнитол или дешевых сотовых телефонов.
Такая матрица представляет из себя простейший двухмерный массив пикселов в виде пересекающихся строк и колонок. Каждое такое пересечение является OLED диодом. Чтобы подсветить его, управляющие сигналы подаются на соответствующие строку и колонку. Чем больше подано напряжение, тем ярче будет светимость пиксела. Напряжение требуется достаточно высокое, вдобавок, подобная схема не позволяет создавать эффективные экраны, состоящие более чем из миллиона пикселов. Когда у первых ноутбуков курсор мыши, двигающийся по экрану, оставлял за собой длинный, угасающий след – вот это и есть пример пассивной матрицы.
Весьма схожи между собой у LCD и OLED принципы работы активной матрицы. Все тот же двухмерный массив из пересекающихся колонок и линий, но на сей раз каждое из их пересечений представляет из себя не только светоизлучающий элемент, жидкокристаллическую ячейку или OLED диод, но и управляющий им транзистор. Управляющий сигнал посылается уже на него, он запоминает какой уровень светимости от ячейки требуется и пока не будет дана другая команда будет исправно поддерживать этот уровень тока. И напряжение в этом случае требуется куда ниже и ячейка куда быстрее реагирует на изменение ситуации.
Понятно, что транзисторы здесь требуются не совсем обычные – они должны лечь еще одним ровным тонким слоем. Исходя из этой задачи и появился новый класс устройств – тонкопленочные транзисторы – TFT. Естественно, что как и их старшие собратья делались они из сугубо неорганических материалов, а именно – из того же привычного кремния. Немного другого разумеется: hydrogenated amorphous silicon, за счет своей физической структуры более медленного чем привычный нам по чипам однокристальный кремний. Максимум, что еще применяют для высококачественных активных матриц – это транзисторы на базе поликристального кремния.
Так вот, свое наступление на рынок OLED экраны начали с пассивных матриц диагональю в пару дюймов и соответствующей направленностью. Разрешение мизерное, цветовая гамма близка к нулю: Не самый плохой вариант между прочим, учитывая, что в большинстве экранов подобных размеров ничего большего просто и не требуется. Вспомните какой-нибудь пульт управления кондиционером или музыкальным центром, да даже экран автомагнитолы, в конце-концов – у изображения там чисто утилитарные задачи, в подавляющем большинстве случаев дело сводится к отображению текста, но даже когда и используется графика – то это простенькие пиктограммы в пару цветов. В общем, тот случай когда лишние навороты соответствующим образом отражающиеся на цене попросту не требуются, а вот некоторые качества OLED, вроде повышенной яркости или насыщенных цветов, могут оказаться именно тем что надо.
Впрочем, человек – существо которому любой степени совершенства будет мало, а даже если и достаточно, то продавцы которым требуется продавать свою продукцию ему объяснят, что на достигнутом успокаиваться не стоит. Так что размеры экранов в набирающих все большую и большую популярность портативных устройствах неуклонно увеличиваются, а разрешение их и цветность – столь же неуклонно растут. Причем – при одновременном снижении цены!
В результате, одновременно с распространением своего влияния на традиционные рынки где используются небольшие плоские экраны, OLED становится идеальным кандидатом для вновь появляющихся устройств. Впрочем, в Tablet PC по прежнему пока используется LCD, но можно смело предполагать, что со временем его там заменит OLED: ведь его применение позволит весьма серьезно снизить толщину, вес, и энергопотребление этих устройств, что для них весьма критично, а то, что OLED не стал использоваться в них сразу – дело даже не столько в его технических параметрах, сколько в том, что ему все же требуется еще год-другой, чтобы начался массовый выпуск и соответствующее падение цен.
Что же касается новых классов устройств, то OLED экраны вполне могут возродить такую незаслуженно забытую вещь, как шлемы виртуальной реальности. В свое время они оказались слишком дорогими, тяжелыми и со слишком маленьким разрешением, а также вообще не слишком блестящим качеством изображения. Новая технология позволит преодолеть если не все, то большинство из этих проблем. Более того, для микроэкранов носимых экранов предназначенных для просмотра “на просвет”, когда информация проецируется на окружающий мир залитый солнечным светом, позволяя видеть и ее и все вокруг OLED может стать просто незаменимым, учитывая требования по яркости, измеряемые в тысячах Кд/кв. м.
Еще одним классом устройств, являющихся несомненными кандидатами на роль безоговорочных поклонников OLED, являются современные мобильные телефоны, в функции которых входит работа с изображениями. Сравнивать качество фотографии на маленьком LCD экране и его OLED аналоге попросту бессмысленно даже на сегодняшних OLED матрицах, использующих по сути лишь первое поколение светоизлучающей органики. Потому и демонстрируются производителями телефонов модели с OLED экранами, а производители этих экранов, совсем недавно вообще не имевшие в своем ассортименте подобное направление только на ближайшие годы планируют объемы продаж в миллионы штук.
Впрочем это все – лишь эволюция уже существующих сегодня применений плоских экранов, тогда как OLED имеет потенциал и для революционных изменений в этой сфере. Да, сегодня OLED экраны производятся на подложке из кремния, причем зачастую из кристаллического, для обеспечения требуемой производительности соединений, отвечающих за управление матрицей. Но производительность органических транзисторов постоянно растет и вот уже некоторые компании ведущие разработки в области OLED экранов, заявляют о своей долговременной ориентации исключительно на гибкие пластиковые экраны.
Хотя пока, более актуальным остается вопрос по тому, что продается в настоящее время: плоскопанельные компьютерные мониторы. Благо что OLED, уже фактически, достиг той стадии когда он может вторгнуться и на этот рынок. Своеобразным прорывом стал продемонстрированный International Display Technology (IDTech), являющейся совместным предприятием между японской IBM и крупнейшим тайваньским производителем мониторов Chi Mai прототип 20” полноцветного монитора на базе OLED.
Компания особо подчеркивает тот факт, что ей удалось создать матрицу с управляющими структурами на базе аморфного, а не поликристаллического кремния – во-первых, относительно дешевого, по крайней мере по сравнению с поликристаллическим и уж тем более однокристальным кремнием, а во-вторых, широко использующегося сегодня при производстве LCD экранов, что дает возможность воспользоваться уже имеющимися линиями по их производству, а следовательно добиться, чтобы цена OLED экранов была примерно того же порядка.
Некоторые плюсы очевидны уже сегодня: это и энергопотребление, составляющее всего 25 Вт при светимости в 300 Кд/кв. м и цветопередача превосходящая по своему уровню качества даже некоторые CRT мониторы, не говоря уже о LCD. Единственный факт, по которому прототип серьезно отстает от выпускающихся сегодня LCD экранов – это, конечно, разрешение матрицы: 1280х768 пикселов для 20” диагонали явно маловато.
Впрочем реально, по общему мнению, до того уровня сочетания технологии и цены, когда он будет в состоянии заменить LCD мониторы, OLED дойдет лишь лет через десять, до той же поры мы будем наблюдать плавный рост диагонали – от мобильных телефонов и прочих подобных вещей, через PDA, к Tablet PC и портативным DVD проигрывателям, с диагональю дюймов в 10.
Однако, на одних компьютерных мониторах свет клином не сошелся, и параллельно будет развиваться направление пластиковых экранов. Где транзисторы, матрица и покрытие – все полностью представляет из себя царство полимеров, гибких и вездесущих, что откроет для компьютеров совершенно новые, недоступные им сегодня рынки.
К примеру, электронная газета. Лист пластика, не менее гибкого чем сегодняшний лист бумаги, со встроенной в него схемой беспроводного доступа к Internet, к последним выпускам разнообразных изданий, простая схема навигации, и конечно великолепное качество изображения, позволяющее оценить всю прелесть цветных фотоиллюстраций к статьям.
Или обои, или скажем шторы. Ведь, если не зацикливаться на способности отображать четкую информацию с высокими разрешениями, то в случае подобного применения, OLED может стать новым нетрадиционным источником равномерного освещения для помещений, заменив собой лампы под потолком, причем с регулируемыми свойствами, от оттенка света, до конкретного узора на своей поверхности. В несколько более отдаленном будущем, когда технологии позволят достичь высоких разрешений и на OLED экранах с диагональю в несколько метров, такая стена сможет с легкостью превратиться при желании в телевизор или мультифункциональное информационное устройство, позволяющее одновременно отражать как один или видеопотоков, так и относящиеся к ним данные.
OLED, благодаря своей яркости свечения, рассматривается даже в том числе и в качестве разметки для взлетно-посадочных полос. А если вспомнить еще и то, что потенциально этот класс материалов может быть использован и для создания элементов занимающихся обратным процессом превращая световую энергию (солнечный свет, в частности) в электричество, картинка становится еще более заманчивой. Производители не зря вкладывают сегодня в эту технологию сотни миллионов долларов в год – в ближайшие годы она даст им рынок, объем которого будет измеряться в десятках миллиардов.

Владимир Зимин

(c)InternetNews

11 april 2006

,