Выбор видеокарты для новичков-2


ati xtxНа прошлой недели мы начали говорить о видеокартах, начав мини-цикл статей, служащий целью ликвидировать пробелы в знаниях в этой области у начинающих пользователей. Причиной столь обширного обзора стали довольно частые заблуждения при выборе видеоподсистемы компьютера и постоянные вопросы о выборе оптимального решения. Мы собрали много данных о видеокартах и отобрали самое важное. Смыслом этой серии станет не выявление лучшего видеоадаптера или тем более производителя. Мы просто дадим вам столько дынных, чтобы после прочтения вы смогли точно с уверенностью сказать, что все знаете, для того чтобы купить то, что вам нужно. Мы уже знаем, какие интерфейсы и выходы карточек есть и чем они отличаются, и теперь пришло время поговорить о самых важных компонентов видеоплаты – графическом процессоре (GPU) и памяти.

Графический процессор

Графический процессор (GPU – Graphic Processor Unit) можно назвать “сердцем” видеокарты, почти так, как центральный процессор (CPU – Central Processor Unit) является “сердцем” компьютера. В большинстве случаев графический процессор скрыт от постороннего взгляда кулером видеокарты. Следует отметить, что графический процессор чаще всего является самым большим и горячим компонентом видеокарты.


Графический процессор – это самая важная часть видеокарты. Практически все аппаратные спецификации, будь то пиксельные конвейеры, вершинные блоки и частоты относятся к архитектуре и возможностям графического процессора. Оставшиеся же спецификации касаются видеопамяти, которая работает вместе с графическим процессором, дабы выдать максимальную производительность в таких приложениях, как игры.
GPU также называют чипом, чипсетом и хотя многие знают такие названия, как GeForce и Radeon, не многие понимают, что кроется за теми или иными обозначениями, как, например, GeForce 6600GT или Radeon X1300XT. Буквы и цифры придуманные коварными маркетологами, для того, чтобы облегчить жизнь людей на самом деле могут сбить начинающего пользователя с толку. Похожие названия могут в корне отличаться технологически. При чем у разных производителей графических процессоров разные системы обозначений и уследить за ними можно, лишь периодически отслеживая различные обзоры и тесты производительности. В нашей газете мы периодически освещаем ключевые новинки на рынке и несколько раз в год делаем обзорный материал о видеоапгрейде.

Функции и архитектура графического процессора.
Реализм 3D-графики очень сильно зависит от производительности видеокарты. Чем больше блоков пиксельных шейдеров содержит процессор, и чем выше частота, тем больше эффектов можно наложить на 3D-сцену, чтобы улучшить её визуальное восприятие.
Графический процессор содержит много различных функциональных блоков. По количеству некоторых компонентов можно оценить, насколько графический процессор мощный. Рассмотрим самые важные функциональные блоки.
Вершинные процессоры (блоки вершинных шейдеров).
Как и блоки пиксельных шейдеров, вершинные процессоры выполняют код программ-шейдеров, которые касаются вершин. Поскольку больший бюджет вершин позволяет создавать более сложные 3D-объекты, производительность вершинных процессоров очень важна в 3D-сценах со сложными объектами или с большим их количеством. Впрочем, блоки вершинных шейдеров всё же не так очевидно влияют на производительность, как пиксельные процессоры.
Пиксельный процессор (блок пиксельных шейдеров) – это компонент графического чипа, выделенный на обработку пиксельных программ-шейдеров. Эти процессоры выполняют вычисления, касающиеся только пикселей. Поскольку пиксели содержат информацию о цвете, пиксельные шейдеры позволяют достичь впечатляющих графических эффектов. Например, большинство эффектов воды, которые вы видели в играх, создаётся с помощью пиксельных шейдеров. Обычно число пиксельных процессоров используется для сравнения пиксельной производительности видеокарт. Если одна карта оснащена восемью блоками пиксельных шейдеров, а другая – 16 блоками, то вполне логично предположить, что видеокарта с 16 блоками будет быстрее обрабатывать сложные пиксельные программы. Также следует учитывать и тактовую частоту, но сегодня удвоение числа пиксельных процессоров эффективнее по энергопотреблению, чем удвоение частоты графического чипа.
Унифицированные шейдеры
Унифицированные (единые) шейдеры ещё не пришли в мир ПК, но грядущий стандарт DirectX 10 как раз опирается на подобную архитектуру. То есть структура кода вершинных, геометрических и пиксельных программ будет единая, хотя шейдеры будут выполнять разную работу. Новую спецификацию можно посмотреть в Xbox 360, где графический процессор был специально разработан ATi для Microsoft. Будет весьма интересно увидеть, какой потенциал несёт новый DirectX 10.
Блоки наложения текстур (Texture Mapping Unit, TMU)
Текстуры следует выбрать и отфильтровать. Эта работа выполняется блоками наложения текстур, которые работают совместно с блоками пиксельных и вершинных шейдеров. Работа TMU заключается в применении текстурных операций над пикселями. Число текстурных блоков в графическом процессоре часто используется для сравнения текстурной производительности видеокарт. Вполне разумно предположить, что видеокарта с большим числом TMU даст более высокую текстурную производительность.
Конвейеры – используются для описания архитектуры видеокарт и дают вполне наглядное представление о производительности графического процессора. Конвейер нельзя считать строгим техническим термином. В графическом процессоре используются разные конвейеры, которые выполняют отличающиеся друг от друга функции. Исторически под конвейером понимали пиксельный процессор, который был подключён к своему блоку наложения текстур (TMU). Например, у видеокарты Radeon 9700 используется восемь пиксельных процессоров, каждый из которых подключён к своему TMU, поэтому считают, что у карты восемь конвейеров. Но современные процессоры описать числом конвейеров весьма сложно. По сравнению с предыдущими дизайнами, новые процессоры используют модульную, фрагментированную структуру. Новатором в этой сфере можно считать ATi, которая с линейкой видеокарт X1000 перешла на модульную структуру, что позволило достичь прироста производительности через внутреннюю оптимизацию. Некоторые блоки процессора используются больше, чем другие, и для повышения производительности графического процессора ATi постаралась найти компромисс между числом нужных блоков и площадью кристалла (её нельзя очень сильно увеличивать). В данной архитектуре термин “пиксельный конвейер” уже потерял своё значение, поскольку пиксельные процессоры уже не подключены к собственным блокам TMU. Например, у графического процессора ATi Radeon X1600 есть 12 блоков пиксельных шейдеров и всего четыре блока наложения текстур TMU. Поэтому нельзя говорить, что в архитектуре этого процессора есть 12 пиксельных конвейеров, как и говорить, что их всего четыре. Впрочем, по традиции пиксельные конвейеры всё ещё упоминают.
Число пиксельных конвейеров в графическом процессоре часто используют для сравнения видеокарт. Например, если взять видеокарты с 24 и 16 конвейерами, то вполне разумно предположить, что карта с 24 конвейерами будет быстрее.
Видеопамять
Видеопамять на карте обычно располагается рядом с графическим процессором, чтобы дорожки были максимально короткими. Это нужно для того, чтобы достичь высоких тактовых частот.
Если графический процессор можно назвать “сердцем” видеокарты, то память – это источник жизненной силы. Прекрасный процессор может потерять всю свою силу из-за медленной или неэффективной памяти. И проявить себя в полной красе в паре с высокопроизводительной памятью с широкой и быстрой шиной.
Чипы памяти (обычно их бывает от двух до восьми) чаще всего располагаются на видеокарте вокруг или по одну сторону от графического процессора. Они выглядят как маленькие чёрные прямоугольники или квадраты равного размера.
Во многих случаях на чипы памяти радиаторы не устанавливаются, поэтому их легко можно заметить на видеокарте. Но иногда к чипам памяти прикрепляется радиатор, либо они закрываются общим с GPU кулером, охлаждающим как графический процессор, так и память.
Современные видеокарты, как правило, оснащаются 128, 256 или 512 Мбайт памяти, причём используется как память DDR2, так и GDDR3. Чем больше будет памяти на видеокарте, тем больше графических данных (как правило, текстур), можно сохранять локально, то есть за ними не нужно будет обращаться в память компьютера. А ведь подобные обращения – серьёзное “узкое место”.
Впрочем, объём – это далеко не всё. Часто дешёвые или массовые видеокарты оснащают большим количеством памяти, чтобы они быстрее продавались. Если современные модели видеокарт используют шину памяти 128 или 256 бит шириной, то некоторые дешёвые и даже средние по цене карты оснащены всего лишь 64-битной шиной. Представьте себе две видеокарты с равными частотами, одна из которых использует 128-битную шину, а вторая – 64-битную. Первая будет передавать за единицу времени в два раза больше данных, чем карта с 64-битной шиной. Современные игры требуют, чтобы рабочие данные хранились в видеопамяти. И если они не будут своевременно поступать к графическому процессору (в случае узкой шины), то он будет простаивать, а игра – ощутимо “тормозить”.
Если вам придётся выбирать между двумя видеокартами, которые различаются тактовыми частотами, объёмом памяти и шириной шины, то всегда выбирайте меньший объём с более широкой шиной. Конечно, если вы получите при этом быструю память и скоростной графический процессор. Это того стоит, поскольку в играх вы получите превосходные результаты.

В следующий раз мы продолжим наш мини-цикл рассказом о технологиях видепроцессоров, о многопроцессорных стандартах и о системах охлаждения.

Владимир Зимин.
(c) Internet News
27 september 2006